
Operating Systems (Fall/Winter 2018)

Process

Yajin Zhou (http://yajin.org)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu).

http://yajin.org

Review

• System calls

• implementation

• API: wrapper of the system call

• parameter passing: register, stack, block

• Linking and loading

• OS structure

• monolithic, micro-kernel, layered, module support, exokernel

• Examples of system calls: fork(), wait(), exec(), ptrace()

Contents

• Process concept

• Process scheduling

• Operations on processes

• Inter-process communication

• examples of IPC Systems

• Communication in client-server systems

Process Concept

• An operating system executes a variety of programs:

• batch system – jobs

• time-shared systems – user programs or tasks

• Process is a program in execution, its execution must progress in
sequential fashion

• a program is static and passive, process is dynamic and active

• one program can be several processes (e.g., multiple instances
of browser, or even on instance of the program)

• process can be started via GUI or command line entry of its name

• through system calls

Process Concept

• A process has multiple parts:

• the program code, also called text section

• runtime CPU states, including program counter, registers, etc

• various types of memory:

• stack: temporary data

• e.g., function parameters, local variables, and return addresses

• data section: global variables

• heap: memory dynamically allocated during runtime

• security: heap feng shui -> how to provide randomness

• Further reading: FreeGuard: A Faster Secure Heap Allocator (CCS 17),
Guarder: A Tunable Secure Allocator (USENIX Sec 18)

Process in Memory

Process State

• As a process executes, it changes state

• new: the process is being created

• running: instructions are being executed

• waiting/blocking: the process is waiting for some
event to occur

• ready: the process is waiting to be assigned to a
processor

• terminated: the process has finished execution

Diagram of Process State

Process State

Process Control Block (PCB)

• In the kernel, each process is associated with a process control block
• process number (pid)
• process state
• program counter (PC)

• CPU registers
• CPU scheduling information
• memory-management data
• accounting data
• I/O status

• Linux’s PCB is defined in struct task_struct: http://lxr.linux.no/linux+v3.2.35/
include/linux/sched.h#L1221

http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221
http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221

Process Control Block (PCB)

Process Control Block in Linux
• Represented by the C structure task_struct

pid_t pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process*/
…

Threads

• So far, process has a single thread of execution

• Consider having multiple program counters per process

• Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread details, multiple program counters
in PCB

Process Scheduling

• CPU scheduler selects which process should be
executed next and allocates CPU

• invoked very frequently, usually in milliseconds: it must
be fast

Process Scheduling

• To maximize CPU utilization, kernel quickly switches processes onto
CPU for time sharing

• Process scheduler selects among available processes for next
execution on CPU

• Kernel maintains scheduling queues of processes:

• job queue: set of all processes in the system

• ready queue: set of all processes residing in main memory, ready
and waiting to execute

• device queues: set of processes waiting for an I/O device

• Processes migrate among the various queues

Queues for Process Scheduling

Ready Queue And Device Queues

Swap In/Out

• Mid-term scheduler

• swap in/out partially executed process to relieve
memory pressure

Scheduler

• Scheduler needs to balance the needs of:

• I/O-bound process

• spends more time doing I/O than computations

• many short CPU bursts

• CPU-bound process

• spends more time doing computations

• few very long CPU bursts

Context Switch

• Context switch: the kernel switches to another process for execution

• save the state of the old process

• load the saved state for the new process

• Context-switch is overhead; CPU does no useful work while
switching

• the more complex the OS and the PCB, longer the context switch

• Context-switch time depends on hardware support

• some hardware provides multiple sets of registers per CPU: multiple
contexts loaded at once

Context Switch

Review

• Process in memory

• text, stack, heap, data

• Process state

• new, ready, running, waiting, terminated

• Process control block (PCB)

• Context switch

Process Creation

• Parent process creates children processes, which, in turn create other
processes, forming a tree of processes
• process identified and managed via a process identifier (pid)

• Design choices:

• three possible levels of resource sharing: all, subset, none
• parent and children’s address spaces

• child duplicates parent address space (e.g., Linux)
• child has a new program loaded into it (e.g., Windows)

• execution of parent and children
• parent and children execute concurrently
• parent waits until children terminate

Process Creation

• UNIX/Linux system calls for process creation

• fork creates a new process

• exec overwrites the process’ address space with a
new program

• wait waits for the child(ren) to terminate

What’s the benefit of separating fork and exec?

C Program Forking Separate Process

#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()
{

pid_t pid;
pid = fork(); /* fork another process */
if (pid < 0) { /* error occurred while forking */

fprintf(stderr, "Fork Failed");
return -1;

} else if (pid == 0) { /* child process */
execlp("/bin/ls", "ls", NULL);

} else { /* parent process */
wait (NULL);
printf ("Child Complete");

}
return 0;

}

Process Creation

Process Termination

• Process executes last statement and asks the kernel to delete it (exit)

• OS delivers the return value from child to parent (via wait)

• process’ resources are deallocated by operating system

• Parent may terminate execution of children processes (abort), for
example:

• child has exceeded allocated resources

• task assigned to child is no longer required

• if parent is exiting, some OS does not allow child to continue

• all children (the sub-tree) will be terminated - cascading
termination

Zombie vs Orphan

• zombie vs orphan

• When child process terminates, it is still in the process
table until the parent process calls wait()

• zombie: child has terminated execution, but parent
did not invoke wait()

• orphan: parent terminated without invoking wait -
Systemd will take over. Systemd will call wait()
periodically

Android Process Importance Hierarchy

• Mobile operating systems often have to terminate processes to reclaim
system resources such as memory. From most to least important:

• Foreground process: visible on screen

• Visible process: not directly visible, but performing activity that
foreground process is referring

• Service process: streaming music

• Background process: performing activity, not apparent to the user

• Empty process: hold no activity

• Android will begin terminating processes that are least important

Android Zygote

Multiprocess Architecture – Chrome Browser
• Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

• Google Chrome Browser is multiprocess with 3 different types of processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML, Javascript. A new renderer
created for each website opened

• Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits

• Plug-in process for each type of plug-in

Chrome on Android: Isolated Process

source: Remotely Compromising iOS via Wi-Fi and Escaping the Sandbox

Chrome on Android: Isolated Process

source: Remotely Compromising iOS via Wi-Fi and Escaping the Sandbox

Interprocess Communication

• Processes within a system may be independent or cooperating
• independent process: process that cannot affect or be affected by

the execution of another process
• cooperating process: processes that can affect or be affected by

other processes, including sharing data
• reasons for cooperating processes: information sharing,

computation speedup, modularity, convenience, Security
• Cooperating processes need interprocess communication (IPC)
• Two models of IPC

• Shared memory
• Message passing

Communications Models

(a) Shared memory. (b) Message passing.

Cooperating Processes

• Independent process cannot affect or be affected by the execution
of another process

• Cooperating process can affect or be affected by the execution of
another process

• Advantages of process cooperation

• Information sharing

• Computation speed-up

• Modularity

• Convenience

Producer-Consumer Problem

• Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process

• unbounded-buffer places no practical limit on the size of the
buffer

• bounded-buffer assumes that there is a fixed buffer size

Interprocess Communication – Shared Memory

• An area of memory shared among the processes that wish to
communicate

• The communication is under the control of the users processes not
the operating system.

• Major issues is to provide mechanism that will allow the user
processes to synchronize their actions when they access shared
memory.

• Synchronization is an issue

Bounded-Buffer – Shared-Memory Solution

• Shared data
#define BUFFER_SIZE 10
typedef struct {
 . . .

} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

Producer

item nextProduced;
while (true) {
 /* produce an item in nextProduced*/
 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER SIZE;

}

Consumer

item nextConsumed;
while (true) {
 while (in == out)
 ; // do nothing -- nothing to consume
 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER SIZE;
 /*consume item in nextConsumed*/

}

• Solution is correct, but can only use BUFFER_SIZE-1 elements
• one unusable buffer to distinguish buffer full/empty

Message Passing

• Processes communicate with each other by exchanging messages

• without resorting to shared variables

• Message passing provides two operations:

• send (message)

• receive (message)

• If P and Q wish to communicate, they need to:

• establish a communication link between them

• e.g., a mailbox(indirect) or pid-based(direct)

• exchange messages via send/receive

Message Passing

• Direct communication

• symmetry addressing: send(P, Message), receive(Q, Message)

• asymmetry addressing: send(P, message), receive(id, Message)

• Indirect communication

• send(A, Message), receive(A, Message) mailbox A

• Mailbox can be implemented in both process and OS

• Mailbox owner: who can receive the message

Message Passing: Synchronization

• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous

• blocking send has the sender block until the message is received

• blocking receive has the receiver block until a message is available

• Non-blocking is considered asynchronous

• non-blocking send has the sender send the message and
continue

• non-blocking receive has the receiver receive a valid message or
null

Message Passing: Buffering

• Queue of messages attached to the link

• zero capacity: 0 messages

• sender must wait for receiver (rendezvous)

• bounded capacity: finite length of n messages

• sender must wait if link full

• unbounded capacity: infinite length

• sender never waits

POSIX Shared Memory

• POSIX Shared Memory

• Process first creates shared memory segment

 shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

• Also used to open an existing segment

• Set the size of the object: ftruncate(shm_fd, 4096);

• Use mmap() to memory-map a file pointer to the shared memory
object

• Reading and writing to shared memory is done by using the
pointer returned by mmap().

IPC POSIX Producer

IPC POSIX Consumer

Pipes

• Pipe acts as a conduit allowing two local processes to
communicate

• Issues

• is communication unidirectional or bidirectional?

• in the case of two-way communication, is it half or full-duplex?

• must there exist a relationship (i.e. parent-child) between the
processes?

• can the pipes be used over a network?

• usually only for local processes

Ordinary Pipes

• Ordinary pipes allow communication in the producer-consumer
style

• producer writes to one end (the write-end of the pipe)

• consumer reads from the other end (the read-end of the pipe)

• ordinary pipes are therefore unidirectional

• Two pipes are needed if we need bidirectional communication

• Require parent-child relationship between communicating
processes

• Activity: review Linux man pipe

Ordinary Pipes

Named Pipes

• Named pipes are more powerful than ordinary pipes

• communication is bidirectional

• no parent-child relationship is necessary between the
processes

• several processes can use the named pipe for
communication

• Named pipe is provided on both UNIX and Windows
systems

• On Linux, it is called FIFO

Client-server Communication

• Sockets

• Remote procedure calls

• Remote method invocation (Java)

Sockets

• A socket is defined as an endpoint for communication

• concatenation of IP address and port

• socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

• Communication consists between a pair of sockets

Socket Communication

Remote Procedure Call

• Remote procedure call (RPC) abstracts function calls between
processes across networks (or even local processes)

• Stub: a proxy for the actual procedure on the remote
machine

• client-side stub locates the server and marshalls the
parameters

• server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

• return values are marshalled and sent to the client

Remote Procedure Call

A Simple Kernel Module

Further reading: https://blog.sourcerer.io/writing-a-simple-linux-kernel-module-d9dc3762c234

HW3 is out!

