Operating Systems (Fall/Winter 2018)

Process

Yajin Zhou (http://yajin.orqg)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu).

http://yajin.org

Review

System calls
implementation
API: wrapper of the system call
parameter passing: register, stack, block
Linking and loading
OS structure
monolithic, micro-kernel, layered, module support, exokernel

Examples of system calls: fork(), wait(), exec(), ptrace()

Contents

Process concept

Process scheduling

Operations on Processes

Inter-process communication
examples of IPC Systems

Communication in client-server systems

Process Concept

» An operating system executes a variety of programs:
- batch system — jobs
- time-shared systems — user programs or tasks

Process is a program in execution, its execution must progress in
seguential fashion

* a program is static and passive, process is dynamic and active

- one program can be several processes (e.g., multiple instances
of browser, or even on instance of the program)

process can be started via GUlI or command line entry of its name

+through system calls

Process Concept

-+ A process has multiple parts:
- the program code, also called text section
- runtime CPU states, including program counter, registers, etc
+various types of memory:
- stack: temporary data
- e.g., function parameters, local variables, and return addresses
- data section: global variables
- heap: memory dynamically allocated during runtime
- security: heap feng shui -> how to provide randomness

- Further reading: FreeGuard: A Faster Secure Heap Allocator (CCS 17),
Guarder: A Tunable Secure Allocator (USENIX Sec 18)

max

Process iIn Memory

stack

heap

data

text

3284766
08:01 2102132
08:01 2102132

71 3b4d34c000-7f3b4d50c000
71 3b4d50c000-713b4d70c000
7f3b4d70c000-7f3b4d7 10000 08:01 2102132
7f3b4d710000-713b4d712000 08:01 2102132
7f3b4d712000-7f3b4d716000 rw-p 00000000 00:00 O
7f3b4d716000-7f3b4d73cO000 r-xp 0OOCO000 08:01 2102104
7f3b4d900000-713b4d925000 rw-p 00000000 00:00 O
7f3b4d93b000-713b4d93c000 r--p 00025000 08:01 2102104
7f3b4d93c000-713b4d93d000 rw-p 00026000 08:01 2102104
7f3b4d93d000-713b4d93e000 rw-p 00000000 00:00 O

7/ -7ffff3bc4000 rw-p 00000000 00:00 O
7ffff3bcdO0O-7ffff3bdOOOO r--p OO0 00:00 O
7ffff3bdo000-7ffff3bd2000 r-xp OO0 00:00 O
fEffffffffe00000-ffffffffff601000 r-xp OOOOOCO00 00:00 O

/bin/cat
/bin/cat
/bin/cat
[heap]
i1b/locale/locale-archive
/1ib/x86_64-1inux-gnu/libc-2.23.s0
/1ib/x86_64-1inux-gnu/libc-2.23.s0
/1ib/x86_64-1inux-gnu/libc-2.23.s0
/1ib/x86_64-1inux-gnu/libc-2.23.s0

/1ib/x86_64-1inux-gnu/ld-2.23.s0

/1ib/x86_64-1inux-gnu/1d-2.23.s0
/1ib/x86_64-1inux-gnu/ld-2.23.s0

[stack]
vvar

[vdso]

[vsyscall]

MEMORY LAYOUT OF A C PROGRAM

The figure shown below illustrates the layout of a C program in memory,
highlighting how the different sections of a process relate to an actual C
program. This figure is similar to the general concept of a process in memory
as shown in Figure 3.1, with a few differences:

* The global data section is divided into different sections for (a) initialized
data and (b) uninitialized data.

® Aseparate section is provided for the argc and argv parameters passed
to themain () function.

#include <stdio.h>

high #include <stdlib.h>
argc, agrv
memory
stack int x;
_______ Glnt v = alos
int main(int argc, char *argvl[])
[I —_ — int *values;
heap F_Eint i;
< —
uninitialized | , - o
data values = (int *)malloc(sizeof (int) *5);
initialized for(i = 0; i < 5; i++)
data values[i] = i;
low
return 0;
memory It }

The GNU size command can be used to determine the size (in bytes) of
some of these sections. Assuming the name of the executable file of the above
C program is memory, the following is the output generated by entering the
command size memory:

text data bss dec hex filename
1158 284 8 1450 5aa memory

The data field refers to uninitialized data, and bss refers to initialized data.
(bss is a historical term referring to block started by symbol.) The dec and
hex values are the sum of the three sections represented in decimal and

hexadecimal, respectively.

Process State

+ As a process executes, it changes state
new: the process is being created
running: instructions are being executed

- waiting/blocking: the process is waiting for some
event to occur

ready: the process is waiting to lbe assigned to a
Processor

- terminated: the process has finished execution

Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Process State

Time Processg Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready|] Processg initiates 1/O
4 Blocked Running Processg is blocked,
5 Blocked Running so Processt runs
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process; now done
9 Running -
10 Running — Processp now done

Process Control Block (PCB)

- In the kernel, each process is associated with a process control block
- process number (pid)
* process state
- program counter (PC)
- CPU registers
-+ CPU scheduling information
* memory-management data
+ accounting data

- |/O status

- Linux’s PCB is defined in struct task_struct: http://Ixr.linux.no/linux+v3.2.35/
include/linux/sched.h#L.1221

http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221
http://lxr.linux.no/linux+v3.2.35/include/linux/sched.h#L1221

Process Control Block (PCB)

process state
process number

program counter

reqgisters

memory limits

list of open files

Process Control Block in Linux

Represented by the C structure
pid_t pid;
long state;

task_ struct
/ %k
/k

unsigned int time_slice /*

struct task struct

xparent; /*

struct list head children; /x

struct files struct xfiles; /x

struct mm_struct >mm; VES

N

siruct task_struct
process information

process identifier x/

state of the process x/
scheduling information */

this process’s parent x/

this process’s children x/

list of open files x/

address space of this processx/

NN

siruct task_struct struct task_struct
process information ee e process information

__“ ' X_/ R/
current
(currently execuling preccess)

current->state

= new_state;

Threads

SO far, process has a single thread of execution
Consider having multiple program counters per process
Multiple locations can execute at once
Multiple threads of control -> threads

Must then have storage for thread details, multiple program counters
in PCB

Process Scheduling

- CPU scheduler selects which process should be
executed next and allocates CPU

- Invoked very frequently, usually in milliseconds: it must
be fast

Process Scheduling

-+ To maximize CPU utilization, kernel quickly switches processes onto
CPU for time sharing

Process scheduler selects among available processes for next
execution on CPU

Kernel maintains scheduling queues of processes:
- Job queue: set of all processes in the system

-+ ready queue: set of all processes residing in main memory, ready
and waiting to execute

- device queues: set of processes waiting for an 1/0O device

Processes migrate among the various queues

Queues for Process Scheduling

| ready queue CPU g
/O queue <*—— |/O request &—

time slice E

expired

Interrupt wait for an
occurs interrupt

child fork a
@_ child)

Ready Queue And Device Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit O

queue header PCB, PCB,
head > > - —
tail egisters registers
head ﬂ—\ /
tail —
head T—=
T M PCB, PCB,, PCBg
/ e S ——
head
PCB;
head - ——

tail

\

Swap In/Out

Mid-term scheduler

swap in/out partially executed process to relieve
memory pressure

swap in

partially executed

swapped-out processes

swap out

H ready queue

» end

2

I/O walting
queues

Scheduler

- Scheduler needs to balance the needs of:
- |/0-bound process
+spends more time doing 1/0O than computations
- many short CPU bursts
- CPU-bound process
- spends more time doing computations

- few very long CPU bursts

Context Switch

- Context switch: the kernel switches to another process for execution
- save the state of the old process
load the saved state for the new process

- Context-switch is overhead; CPU does no useful work while
switching

- the more complex the OS and the PCB, longer the context switch
- Context-switch time depends on hardware support

-+ some hardware provides multiple sets of registers per CPU: multiple
contexts loaded at once

Context Switch

process P,

operating system process P,

interrupt or system call

executing / l

‘\

»idle

-~

executing \

save state into PCB,

reload state from PCB,

/-

interrupt or system call

| T

save state into PCB,

reload state from PCB,

> idle

executing

> idle

Review

Process in memory

admitted interrupt

text, stack, heap, data

scheduler dispatch

|/O or event wait

Process S-ta-te I/O or event completion

new, ready, running, waiting, terminated

process state

Process control block (PCB) process number
program counter
Context switch registers

memory limits

list of open files

Process Creation

Parent process creates children processes, which, in turn create other
processes, forming a tree of processes

- process identified and managed via a process identifier (pid)
Design choices:

- three possible levels of resource sharing: all, sulbset, none
- parent and children’s address spaces

- child duplicates parent address space (e.g., Linux)

- child has a new program loaded into it (e.g., Windows)
- execution of parent and children

- parent and children execute concurrently

- parent waits until children terminate

Process Creation

UNIX/Linux system calls for process creation

- fork creates a new process

+ exec overwrites the process’ address space with a
Nnew program

- wait waits for the child(ren) to terminate

What'’s the benefit of separating fork and exec?

C Program Forking Separate Process

#1include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()

{

pid_t pid;

pid = fork(); /* fork another process */

1f (pid < 0) { /* error occurred while forking */
fprintf(stderr, "Fork Failed");
return -1;

} else 1f (pid == 0) { /* child process */
execlp("/bin/ls", "ls", NULL);

} else { /* parent process */

wait (NULL);
printf ("Child Complete™);
¥

return 0;

Process Creation

parent : resumes
walt e

child ' exec() »

Process Termination

Process executes last statement and asks the kernel to delete it (exit)
-+ OS delivers the return value from child to parent (via wait)
* process’ resources are deallocated by operating system

Parent may terminate execution of children processes (abort), for
example:

- child has exceeded allocated resources
- task assigned to child is no longer required
- If parent is exiting, some OS does not allow child to continue

- all children (the sub-tree) will be terminated - cascading
termination

Zombie vs Orphan

- zombie vs orphan

- When child process terminates, it is still in the process
table until the parent process calls wait()

- zombie: child has terminated execution, but parent
did not invoke wait()

- orphan: parent terminated without invoking walit -
Systemd will take over. Systemd will call wait()
periodically

Android Process Importance Hierarchy

Mobile operating systems often have to terminate processes to reclaim
system resources such as memory. From most to least important:

Foreground process: visible on screen

Visible process: not directly visible, but performing activity that
foreground process is referring

Service process: streaming music
Background process: performing activity, not apparent to the user
Empty process: hold no activity

Android will begin terminating processes that are least important

Android Zygote

O
— 0 AT AP
| Init {pid=1) | (e.g.,) \;ro‘c’ WOt s

(L) request

(2) fork()

Zygote

— AM

T

L new app
|_4r

—I Music

T TRl

'Pl Browser |

(3) warm-init
(1) specialize

Shared libraries

Multiprocess Architecture — Chrome Browser

Many web browsers ran as single process (some still do)

If one web site causes trouble, entire browser can hang or crash
Google Chrome Browser is multiprocess with 3 different types of processes:

Browser process manages user interface, disk and network 1/0O

Renderer process renders web pages, deals with HTML, Javascript. A new renderer
created for each website opened

Runs in sandbox restricting disk and network 1/0O, minimizing effect of security exploits

Plug-in process for each type of plug-in

.Wlley Operating System ¢ X mas BBC - Homepage

& Chrome Browser 0S-BOOK.COM X

C | @ https:// oogle.com/chrome/bro r/desktop/ i’k
c chrome DOWNLOAD ~ cOMEBOOKS ~ CHROMECAST ~

Each tab represents a separate process.

T

Chrome on Android:; Isolated Process

{% for i1 in range(num_sandboxed services) %}

<service android:name="org.chromium.content.app.SandboxedProcessService{{ i }}"
android:process=":sandboxed process{{ i }}"

android:isol 2
android:exported="{{sandboxed service exported|default(false)}}"
{¢ if (sandboxed service exported|default(false)) == 'true' %}
tools:ignore="ExportedService"

{% endif %)}

{{sandboxed service extra flags|default('')}} />
{% endfor %}

source: Remotely Compromising iOS via Wi-Fi and Escaping the Sandbox

Chrome on Android:; Isolated Process

* |solated process was introduced around Android 4.3

* "If set to true, this service will run under a special process that is
isolated from the rest of the system and has no permissions of it

7

own.

* Chromium render process

$ adb shell ps -Z | grep chrome
u:r:untrusted_app:s@:c512,c768 ud_a39 7215 520 com.android.chrome

u:r:isolated_app:s0:c512,c768 u0_10 7243 520 com.android.chrome:sandboxe

d_process®

u:r:untrusted_app:s@:c512,c768 ud_a39 7272 520 com.android.chrome:privileg

ed_process0

source: Remotely Compromising iOS via Wi-Fi and Escaping the Sandbox

Interprocess Communication

Processes within a system may be independent or cooperating

- Independent process: process that cannot affect or be affected by
the execution of another process

- cooperating process: processes that can affect or be affected by
other processes, including sharing data

reasons for cooperating processes: information sharing,
computation speedup, modularity, convenience, Security

- Cooperating processes need interprocess communication (IPC)
-+ Two models of IPC
- Shared memory

Message passing

Communications Models

(a) Shared memory.

process A

—> shared memory <

(b) Message passing.

process A

process B

process B

kernel

(a)

message queue

Mo

AT LA LRl s

kernel

(b)

Cooperating Processes

Independent process cannot affect or be affected by the execution
of another process

Cooperating process can affect or be affected by the execution of
another process

Advantages of process cooperation
Information sharing

Computation speed-up

Modularity

Convenience

Producer-Consumer Problem

Paradigm for cooperating processes, producer process produces
iInformation that is consumed by a consumer process

unbounded-buffer places no practical limit on the size of the
buffer

bounded-buffer assumes that there is a fixed buffer size

Interprocess Communication — Shared Memo

An area of memory shared among the processes that wish to
communicate

The communication is under the control of the users processes not
the operating system.

Major issues is to provide mechanism that will allow the user
processes to synchronize their actions when they access shared
Memory.

Synchronization is an issue

Bounded-Buffer — Shared-Memory Solution

Shared data
#define BUFFER_SIZE 10

typedef struct {
} 1tem;

1tem buffer[BUFFER_SIZE];
int 1n = 0;
int out = 0;

Producer

1tem nextProduced;

while (true) {
/* produce an item i1n nextProduced*/

while (((in + 1) % BUFFER_SIZE) == out)
/* do nothing -- no free buffers */

b

buffer[in] = nextProduced;
in = (in + 1) % BUFFER SIZE;

consumer

1tem nextConsumed;
while (true) {
while (1n == out)
; // do nothing -- nothing to consume
nextConsumed = buffer[out];
out = (out + 1) % BUFFER SIZE;
/*consume i1tem in nextConsumed*/

Solution is correct, but can only use BUFFER_SIZE-1 elements

one unusable buffer to distinguish buffer full/empty

Message Passing

+ Processes communicate with each other by exchanging messages
- without resorting to shared variables
- Message passing provides two operations:
- send (message)
- receive (message)
- |f P and Q wish to communicate, they need to:
- establish a communication link between them
+e.g., a mailbox(indirect) or pid-based(direct)

- exchange messages via send/receive

Message Passing

Direct communication
symmetry addressing: send(P, Message), receive(Q, Message)
asymmetry addressing: send(P, message), receive(id, Message)
Indirect communication
send(A, Message), receive(A, Message) mailbox A
Mailbox can be implemented in both process and OS

Mailbox owner: who can receive the message

Message Passing: Synchronization

- Message passing may be either blocking or non-blocking
- Blocking is considered synchronous

* blocking send has the sender block until the message is received

- blocking receive has the receiver block until a message is available
- Non-blocking is considered asynchronous

* hon-blocking send has the sender send the message and
continue

* non-blocking receive has the receiver receive a valid message or
null

Message Passing: Buffering

-+ Queue of messages attached to the link
- zero capacity: O messages
- sender must wait for receiver (rendezvous)
- bounded capacity: finite length of n messages
- sender must walit if link full
- unbounded capacity: infinite length

- sender never waits

POSIX Shared Memory

POSIX Shared Memory

Process first creates shared memory segment

shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

Also used to open an existing segment
Set the size of the object: ftruncate(shm_fd, 4096);

Use mmap() to memory-map a file pointer to the shared memory
object

Reading and writing to shared memory is done by using the
pointer returned by mmap!).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>

IPC POSIX Producer binclude <sye/atat o>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "(QOS";

/* strings written to shared memory */

const char *message.0 = "Hello";

const char *message.1 = "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, 0O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"%s",message.0);

ptr += strlen(message.0);

sprintf (ptr,"%s",message_1);

ptr += strlen(message 1);

return 0;

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

#include <sys/shm.h
|PC DOS'X COnsum'#include :sys/stat.;>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "Q0S";

/* shared memory file descriptor */

int shm fd;

/* pointer to shared memory obect */

void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O_RDONLY, 0666) ;

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf ("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink (name) ;

return 0;

Plpes

Pipe acts as a conduit allowing two local processes to
communicate

Issues
IS communication unidirectional or bidirectional?
INn the case of two-way communication, is it half or full-duplex”?

must there exist a relationship (i.e. parent-child) between the
Drocesses’”

can the pipes be used over a network”

usually only for local processes

Ordinary Pipes

- Ordinary pipes allow communication in the producer-consumer
style

- producer writes to one end (the write-end of the pipe)

-+ consumer reads from the other end (the read-end of the pipe)
- ordinary pipes are therefore unidirectional

- Two pipes are needed if we need bidirectional communication

Require parent-child relationship between communicating
Processes

- Activity: review Linux man pipe

Ordinary Pipes

Parent Child

fd [0] fd [0]

fd [1]2 | fd [1]

pipe)
(===

Named Pipes

- Named pipes are more powerful than ordinary pipes
+ communication is bidirectional

* no parent-child relationship Is necessary between the
Processes

+several processes can use the named pipe for
communication

- Named pipe is provided on both UNIX and Windows
systems

- On Linux, it is called FIFO

Client-server Communication

Sockets
Remote procedure calls

Remote method invocation (Java)

Sockets

- A socket is defined as an endpoint for communication
-+ concatenation of I[P address and port

- socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

- Communication consists between a pair of sockets

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(EliGiF2551I98:8 1)

Remote Procedure Call

Remote procedure call (RPC) abstracts function calls between
Processes across networks (or even local processes)

-+ Stub: a proxy for the actual procedure on the remote
machine

- client-side stub locates the server and marshalls the
parameters

*server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

return values are marshalled and sent to the client

Remote Procedure Call

Walt for result

ClienNt e————————————_____
ﬂ S
Call remote Return
procedure from call
Request Reply

Call local procedure ime >
and return results

A Simple Kernel Module

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/signal.h>

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Yajin Zhou");

MODULE_DESCRIPTION("A simple example Linux module.");
MODULE_VERSION("0.01");

static int __init os_lkm_example_init(void) {
struct task_struct *task;

for_each_process(task)
printk (KERN_INFO "%s [%d]\n", task->comm, task->pid);

return 0;

}

static void __exit os_lkm_example_exit(void) {
printk (KERN_INFO "Goodbye, World!\n");

}

module_init(os_lkm_example_init);
module_exit(os_lkm_example_exit);

Further reading: https://blog.sourcerer.io/writing-a-simple-linux-kernel-module-d9dc3762¢c234

HW3 Is out!

